Big Sky Regional Carbon Sequestration Partnership – Kevin Dome Carbon Storage FC26-05NT42587

Lee Spangler, Montana State University

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Mastering the Subsurfacethrough technology Innovation and Collaboration

August 16-18, 2016

Acknowledgments

- US Department of Energy
- Altamont Oil & Gas, Inc.
- Columbia University & Barnard College
- Idaho National Laboratory
- Los Alamos National Laboratory
- Lawrence Berkeley National Laboratory
- Schlumberger Carbon Services
- SWCA Environmental Consultants
- Vecta Oil and Gas, Ltd.
- Washington State University

2

Presentation Outline

- Program Goals / Scope of Work / Goals & Objectives
- Project Overview
 - Geology of Kevin Dome / Regional Significance
 - Site Characteristics Scientific Opportunities
- Site Characterization
- Modeling
- Monitoring
- Results to Date and Accomplishments
- Summary

3

Benefit to the Program

- Support industries' ability to predict CO2 storage capacity in geologic formations to within ±30%
 - The project will correlate logs, core studies, seismic and modeling efforts with multiple iterations through all stages of the project to determine actual storage compared to predicted. The project also tests storage in a regionally significant formation and in regionally significant structural closures that should refine regional capacity estimates.
- Develop and validate technologies to ensure 99 percent storage permanence.
 - The project will use 3D, 9C surface seismic, VSP, in zone and above zone geochemical sampling, repeat pulsed neutron logging, tracers, distributed T and P sensors and assurance monitoring techniques to verify location that the CO₂ remains in the storage complex.

Benefit to the Program

- Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness.
 - Pulsed neutron logging and heat pulses to the reservoir combined with distributed temperature sensing should provide saturation information which can be studied as a function of injection rate. We will also measure rock physics properties as a function of CO₂ saturation to try to improve understanding of seismic response to S_{CO2}.
- Develop Best Practice Manuals for monitoring, verification, accounting, and assessment; site screening, selection and initial characterization; public outreach; well management activities; and risk analysis and simulation.
 - BSCSP will use information from this project to contribute to best practices manuals.

5

Project Overview: Goals and Objectives

Primary objective - Demonstrate that the target formation and other analogous formations are a viable and safe target for sequestration of a large fraction of the region's CO_2 emissions.

Success Criteria – Project safely injects CO_2 into the storage formation and models and monitoring indicate permanence of storage in the reservoir.

Other objectives include improving the understanding of injectivity, capacity, and storativity in a regionally significant formation.

Success Criteria – Site characterization, laboratory core studies, well tests, models coupled with operational data deepen understanding of use of site characterization data for predicting geologic system performance. Comparison of natural analog data with laboratory studies and geochemical sampling in the injection region improve understanding of injected CO_2 behavior in reactive rock.

6

Project Overview: Goals and Objectives

Operational objectives - Safely procure, transport, inject and monitor up to one million tons of CO_2 into the target formation; understand the behavior of the injected CO_2 within the formation; verify and improve predictive models of CO_2 behavior; test and validate monitoring, verification and accounting (MVA) methodology.

Success Criteria – Safe and successful injection; good history matching of multi-phase flow and reactive transport models; monitoring techniques detect CO_2 when present and provide information of plume development.

Post-injection phase objective - Assess any resultant changes from the CO_2 injection and to continue to monitor the CO_2 plume.

Success Criteria – Continued detection of plume evolution and models showing predictive capability.

Regional characterization objectives - Understand the costs of carbon sequestration; determine the best management practices to sequester carbon in the soil of agricultural systems; and refine regional assessments of CO₂ sources and capacity estimates.

Project Overview

- Permitting & Public Outreach
- Site Characterization
- Infrastructure Development
 - Characterization wells
 - 1 Injection Well
 - Monitoring Wells, Pipelines
 Compressor
- Injection Operations
 - 4 years
- Monitoring & Modeling
- Site Closure

Domes Are Attractive Early Storage Target

Prevent trespass issues – buoyancy flow will take CO₂ to top of dome

BIG SKY CARBON

 Potential use as carbon warehouse – decouple anthropogenic CO₂ rate from utilization rate

Kevin Dome

- CO₂ in middle Duperow
- Two "gold standard" seals
 - Upper Duperow
 ~200' tight
 carbonates and
 interbedded
 anhydites
 - Caprock~ 150' Anhydrite
- **Multiple tertiary seals**

Kevin Structure Tops & Well Penetrations

NW - SE Cross Section Kevin Dome

Site Characteristics – Scientific Opportunities

Natural CO₂ production

 Opportunity to study the natural accumulation and long term effects

CO₂ in a reactive rock

- Opportunity to study geochemical effects on both reservoir rock (long term fate of CO₂) and caprock (storage security)
- To accomplish this, injection should be in water leg of the same formation
- Still retain engineered system learnings on injection, transport, capacity, etc.

Duperow is a fractured reservoir with very secure caprock

 Opportunity to investigate impact of fracture permeability

Site Characterization Approach / Accomplishments

Approach

- Assimilate surface data
 - Topography, water features, viewsheds, infrastructure, cultural resources, biological resources, etc.
- Create GIS products for surface features
- Perform baseline monitoring
- Assimilate subsurface data
 - Wells, tops, logs, 2D seismic, produced water, drilling records
- Create database
- Create static model
- Shoot 3D, 9C seismic
- Drill, log and core 2 wells
 - Perform well tests and core analysis

Key Accomplishments

- Kevin Atlas created with surface and subsurface data incorporated
- ~ 36 sq. mi. 3D, 9C seismic shot, processed and being interpreted
- Static geologic model created
 - Hundreds of wells for tops, 32 logs digitized for geophysical parameters, 2D seismic, 3D, 9C seismic
- Initial flow modeling performed
 - Injection & production regions
 - Sensitivity analysis
 - Reactive transport
- Cores and logs acquired / analyzed
- Well tests performed
- Second flow modeling performed

Well Locations

Geophysical	Logs	Wells					
Characterization &		1 st Prod	Inj	Mon	All		
Monitoring:	Downhole P & T	Cont.	Cont.	Cont.	Cont.		
vveli Logging	Gamma Ray	Initial	Initial	Initial	Initial		
Death of Investigation	Resistivity	Initial	Initial	Initial	Initial		
and Resolution	Porosity	Initial	Initial	Initial	Initial		
Formation	Density	Initial	Initial	Initial	Initial		
	Caliper	Initial	Initial	Initial	Initial		
Depth of investigation	P&S Sonic	Initial	Initial	Initial	Initial		
	Sonic Scanner	Initial	Initial	Initial			
	Isolation Scan	Initial	Initial	Initial			
	FMI	Initial	Initial	Initial			
Resolution	NMR	Initial	Initial	Initial			
elog Log	Natural Gamma	Initial	Initial	Initial			
B S	Elemental Spec	Initial	Initial	Initial			
	Cement Eval	Initial	Initial	Initial	Initial		
	Pulsed Neutron	Initial	Annual	Annual/ 2 Annual	Initial		

Core Plan – Intervals and Analyses

Caprock Geomechanical Tests

- Potlatch Anhydrite
- 3687'-depth of the Wallawein well
- Sample density 2.5 2.83 g/cm³(close to the theoretical density of anhydrite (2.97 g/cm³ indicating nearly pure anhydrite with very little porosity.)
- Single crystals of anhydrite appear to be as large as 1-3 cm

Caprock Geomechanical Tests

Caprock Geomechanical Tests

	UCS (MPA)			Your	ng's (GPa)		Poisson			
	All	Vert	Horiz	All	Vert	Horiz	All	Vert	Horiz	
Mean	153.1	150.8	155.4	91.42	93.29	89.55	0.32	0.35	0.30	
StdDev	27.47	15.30	40.46	11.49	14.15	10.94	0.06	0.07	0.04	

- The Potlatch Anhydrite is very strong in both orientations
- The average Young's modulus (91 Gpa) reflects a very stiff material
- Samples dilated strongly at peak strength before failing indicating significant plasticity even under unconfined conditions

BIG SKY CARI

Strain (mm/mm)

Caprock Geomechanical Analysis

Middle Duperow – Fractures

Middle Duperow – Fractures Propped by Precipitates

Fracture Analysis of Cored Intervals of the Duperow

Fracture Analysis of Cored Intervals of the Duperow

Facies vs. Fracture Type (Normalized)

Aperture Width Frequency per Facies

Core Analyses

Table 1: Powder XRD whole rock mineralogy for MSU core plugs and analogue outcrop test samples (semi-quantitative weight %)

PDF #'s listed for MDI Jade 9.0 Database													
Sample ID	Plug ID	Well	Depth (ft.)	Dolomite	PDF	Calcite	PDF	Anhydrite	PDF	Gypsum	PDF	Quartz	PDF
24243_3296_40_A	68	Danielson 33-17	3296.4	93.4	97-008-7088	0	n/a	3.5	98-000-0090	3.1	98-000-0234	0	n/a
24243_3358_25_A	69	Danielson 33-17	3358.25	92.5	97-017-1513	5.6	97-004-0106	0	n/a	0	n/a	1.9	97-006-7124
24243_3308_40_A	70	Danielson 33-17	3308.4	98.1	97-017-1512	0	n/a	0	n/a	0	n/a	1.9	97-006-7124
24242_4120_50_A	44	Wallewein 22-1	4120.5	92.2	97-018-5046	0.7	97-004-0548	0.7	97-001-5876	6.4	97-015-1692	0	n/a
24242_4131_40_A	46	Wallewein 22-1	4131.4	98.6	97-003-1210	0	n/a	0	n/a	0	n/a	1.4	97-064-7410

*No clays appear to be present after following USGS XRD sample preparation protocol in open-file report 01-041

Table 2: Porosity and permeability for MSU whole core plugs

Sample ID	Plug ID	Well	Depth (ft.)	Plug length (cm)	Plug diam. (cm)	Confining pressure (psi)	Porosity (%)	Permeability (mD)	Klinkenberg permeability (mD)
24242 2295 40 4	69	Danielson 22-17	2295.40	5.52	2.51	500	6.36	3.66	3.26
24245_5250_40_A	00	Dameison 33-17	5250.40	5.55	2.51	1100	6.12	2.89	2.55
	69	Danielson 33-17	3358.25	4.74	2.52	500	14.92	56.00	54.10
24245_5556_25_A						1100	14.80	55.00	53.10
24242 2208 40 4	70	Danielson 33-17	3308.40	6.05	2.52	500	8.99	27.20	25.90
24243_3308_40_A						1100	8.81	22.40	21.30
24242_4120_50_A		Wallowein 22.1	4120 50	5.36	2.51	500	9.57	3.15	2.78
	44	wallewein 22-1	4120.50			1100	9.51	3.12	2.75
	46	46 Wallewein 22-1	4131.40	4.94	2.52	500	9.27	8.66	7.99
24242_4131_40_A	40				2.52	1100	9.14	8.00	7.36

XRD of Core Plugs (Permeable Zones)

Table 1: Powder XRD whole rock mineralogy for MSU core plugs and analogue outcrop test samples (semi-quantitative weight %)

FOI # 3 listed for more sto balabase													
Sample ID	Plug ID	Well	Depth (ft.)	Dolomite	PDF	Calcite	PDF	Anhydrite	PDF	Gypsum	PDF	Quartz	PDF
24243_3296_40_A	68	Danielson 33-17	3296.4	93.4	97-008-7088	0	n/a	3.5	98-000-0090	3.1	98-000-0234	0	n/a
24243_3358_25_A	69	Danielson 33-17	3358.25	92.5	97-017-1513	5.6	97-004-0106	0	n/a	0	n/a	1.9	97-006-7124
24243_3308_40_A	70	Danielson 33-17	3308.4	98.1	97-017-1512	0	n/a	0	n/a	0	n/a	1.9	97-006-7124
24242_4120_50_A	44	Wallewein 22-1	4120.5	92.2	97-018-5046	0.7	97-004-0548	0.7	97-001-5876	6.4	97-015-1692	0	n/a
24242_4131_40_A	46	Wallewein 22-1	4131.4	98.6	97-003-1210	0	n/a	0	n/a	0	n/a	1.4	97-064-7410

<u>92 – 98% Dolomite</u>

0 – 3.5% Anhydrite

0 - 6.4 % Gypsum

29

STATE UNIVERSITY

0 – 5.6% Calcite

0 – 2% Quartz

*No clays appear to be present after following USGS XRD sample preparation protocol in open-file report 01-041

DDE #'s listed for MDL Jado 9.0 Database

Heterogeneity and Porosity Characteristics of the Middle Duperow

30

Core Flood Experiments

	Sample ID	Avg. pressure (psi)	Temperature (°C)	Brine/DI	Duration of N ₂ exposure (days)	Duration of CO ₂ exposure (days)
	D69A	1400	60	Brine	5	28
	D69B	1400	60	Brine	5	28
	D69C	1400	60	Brine	33	0
	W44A	1400	60	Brine	5	28
Set 1	W44B	1400	60	Brine	5	28
	W44C	1400	60	Brine	33	0
	W46A	1400	60	Brine	5	28
	W46B	1400	60	Brine	5	28
	W46C	1400	60	Brine	33	0
	D70A	1400	60	DI	5	28
Set 2	D70B	1400	60	DI	5	28
Set 2	D70C	1400	60	DI	5+28 (not consecutive)	0
	D68A	1400	60	Brine	5	0

Core Flood Experiments

Porosity Dependence of Ambient Vp & Vs for the Duperow Formation:

Ambient pressure Vp (solid blue) as well as Vs (solid yellow/green) compared to sonic log/neutron porosity crossplot (open symbols) and a carbonate effective medium theory based on a modified Kuster-Toksoz relation

Seismic Structural Data

Structural surfaces from Shear Wave (SH) Seismic BSCSP Kevin Dome

BSCSP Seismic Monitoring Program Poststack P and SH inversion IsSS with Wallewein GR

BSCSP Seismic Monitoring Program

9C dataset has good to excellent P and SH signal useful for characterizing Middle Duperow porosity zones

- Well to seismic matches, particularly in paleozoic, are excellent on P and SH datasets
- Subtle NE-SW structural fabric points back at crest of Kevin dome throughout paleozoic section
- Joint inversion performance was good, as expected, and middle Duperow porosity zone is readily visible on both impedances
- Meaningful impedance variations are visible on joint inversion output at middle Duperow level

Sectority of 215 12 Mid-Duperow p from P/SH/SV inversion also shows some downdip fit.

SV offset >20 deg. To emphasize density

BIG SKY CARBON

39

Inline (left) and crossline (right) through Wallewein and Danielson wells; seismic is Ip from Vecta joint P/SH inversion; line locations shown on index map on left

THE LEADING EDGE OCTOBER 1998, p 1396

Dynamic reservoir characterization of Vacuum Field

DANIEL J. TALLEY, Chevron North American Exploration and Production, New Orlea THOMAS L. DAVIS and ROBERT D. BENSON, Colorado School of Mines STEVEN L. ROCHE, Input/Output, Sugar Land, Texas

Time-lapse multicomponent seismic surveying enables dynamic reservoir characterization and the production of a dynamic reservoir model. This, in turn, assists in producing structured economic and technical decisions that will extend reservoir life and improve recovery while reducing risk and environmental impact.

This article briefly describes the

S-waves enable the discrimination of rock and fluid properties, their characteristics, and their changes over time.

When combined into time-lapse multicomponent (4-D, 3-C) seismology, the resulting method is a tool for volume resolution: i.e., it provides the ability to sense changes in the bulk rock/fluid properties of the

"The shear-waves responded to a change in pore aspect ratio or preferential opening of microfractures resulting from the injection of CO₂. The faster shear-wave (S1) velocity was attenuated less with the resulting change in low-aspect ratio crack porosity."

affected by Figure 5. Velocity anisotropy map from the base 3-D, 3-C survey. The area and is a p south of the CO_2 injection shows values of near zero percent anisotropy, ability, why indicating vertical open fractures both parallel and perpendicular to the wave is affi maximum horizontal stress field.

Figure 6. Velocity anisotropy map from the repeat 3-D, 3-C survey. The zone of zero percent anisotropy from the base survey is now showing 6% positive anisotropy, indicating a higher density of vertical open fractures parallel to the maximum horizontal stress direction or stiffening of the frame due to viscosity and/or saturation change of the fluid and a reduction in bulk density.

Modeling

Static Geologic Model

- Three domain sizes (Regional, Dome, Production / Injection)

Multiphase Flow Modeling For CO₂ Injection

- Sensitivity Analysis
 - Three rock parameters (different k, Φ)
 - Two injection rates (constant, stepped)
- Multiple Interacting Continua modeling to account for both fracture and matrix permeability

Multiphase Flow – Production

- Sensitivity Analysis
 - Three Gas-water contact heights
 - Pressure effects at multiple distances as a function of production rate / duration

Geochemical & Reactive Transport Modeling

Risk Modeling

Static Model

Petra – Works with IHS well log database. Use ~1000 wells to pick formation tops. Good for structural information. Export info to Petrel.

Petrel – Incorporate logs, petrophysical properties (18 wells in injection zone), existing 2D seismic and BSCSP acquired 3D seismic. Export cellular model info for flow modeling.

Flow Modeling - Multiple Interacting Continua (MINC)

- The cores extracted from both wells and the step-rate injection tests at the monitoring well showed that the target production/injection formation, the Middle Duperow, is highly fractured in its high-porosity zone.
- 2D radial MINC TOUGH2 model, with one fracture continuum and four matrix continua, with volumetric fraction of 0.01, 0.05, 0.20, 0.34, and 0.40, and porosity of 1.0, 0.15, 0.10, 0.10, and 0.08, respectively;
- In this model, global fracture-fracture connections, global matrix-matrix connections, and local fracture-matrix connections are considered;
- Four fracture permeability (Kf) parameters are considered;
- Fracture spacing of the high-porosity layer of the Middle Duperow is based on core fracture mapping and FMI logging, and fracture aperture or fracture permeability is based on the step-rate injection test analysis and sensitivity analysis;
- The matrix permeability (Km) is based on the effective permeability derived from the step-rate injection tests, while matrix porosity is based on core measurements;

MINC Simulated Pressure Buildup (ΔP)

Simulated bottomhole injection ΔP , as a function of time in 6 cases

MINC Simulated CO₂ Plumes

100

100

Matrix Fracture Elevations Relative to Nisku Top (m) Elevations Relative to Nisku Top (m) 0.5 0.45 -50 -50 0.4 0.35 0.3 0.25 -100 -100 0.2 0.15 0.1 0.05 -150 -150 (b) 1 year (b) 1 year -200 -200 400 200 400 600 200 600 800 0 0 Radial Distance (m) Radial Distance (m) Elevations Relative to Nisku Top (m) Elevations Relative to Nisku Top (m) 0.5 0.45 -50 -50 0.4 0.35 0.3 0.25 -100 -100 0.2 0.15 0.1 0.05 -150 -150 (f) 4 year (f) 4 year -200 -200 400 200 400 800 200 600 600 0 0 Radial Distance (m) Radial Distance (m)

SEQUESTRATION PARTNERSHIP

MINC Simulation results

Site-specific data show the Middle Duperow injection target is highly fractured. We developed a MINC model for a 2D radial TOUGH2 model, with one fracture continuum and four matrix continua.

- The site-specific data used in the model includes matrix porosity from core measurements, matrix permeability from the step-rate injection test, fracture spacing from core images, and fracture permeability through different sensitivity cases;
- The injection rate is constant at 250,000 Mt CO₂ /yr over four years;
- The simulated bottomhole injection pressure indicates that the fractured Middle Duperow has sufficient injectivity because fractures significantly lower injection pressure in comparison to matrix only cases;
- The majority of injected CO₂ is stored in the rock matrix because of the strong fracture-matrix interactions of CO₂ flow;

ις Sky Cai

The benefits of enhanced injectivity and sufficient storage efficiency in fractured rock can be attributed to the high mobility of CO₂ flow in fractures, with high CO₂ saturation and thus relative permeability, and to the strong fracture-matrix interaction of CO₂ flow.

MONTANA STATE UNIVERSITY

46

Key Points

- Seismic indicates that structure conforms to the original mapping and no major faults are present in the injection area.
- Modern log suites from the production area and injection area demonstrate rock units in the reservoir intervals are very continuous and correlate extremely well over 7 miles.
- Core and log data indicate very good reservoir properties consistent over large regions.
- Natural fracturing is present but is bedding constrained and confined to the reservoir interval.
- Core from the Potlatch Anhydrite and the Upper Duperow caprock demonstrate the mechanical integrity of both intervals.

Wallewein (Injection Region) Well Data

Wallewein 22-1 Duperow Samples

Sample Info										
Well ID	MSU Sample ID	Depth Range	Date Collected	TDS (ppm)						
Wallewein 22-1	Zone 3, Sample 1	4185-4190	December 22, 2014	6420						
Wallewein 22-1	Zone 3, Sample 2	4185-4190	December 22, 2014	6120						
Wallewein 22-1	Zone 3, Sample 4	4185-4190	December 22, 2014	2815						
Wallewein 22-1	Zone 3, Sample 5	4185-4190	December 22, 2014	5350						
Wallewein 22-1	Zone 3, Sample 6	4185-4190	December 22, 2014	7010						
Wallewein 22-1	Zone 5, Sample 1	4040-4057	January 9, 2015	11000						
Wallewein 22-1	Zone 5, Sample 2	4040-4057	January 9, 2015	6692						
Wallewein 22-1	Zone 5, Sample 3	4040-4057	January 9, 2015	9200						
Wallewein 22-1	Zone 5, Sample 4	4040-4057	October 15, 2015	8510						
Wallewein 22-1	Zone 5, Sample 4a	4040-4057	October 15, 2015	10200						
Wallewein 22-1	Zone 5, Sample 5	4040-4057	October 22, 2015	7250						
Wallewein 22-1	Zone 5, Sample 5a	4040-4057	October 22, 2015	8750						
Wallewein 22-1	Zone 5, Sample 6	4040-4057	October 27, 2015	7160						
Wallewein 22-1	Zone 5, Sample 6a	4040-4057	October 27, 2015	8780						
Wallewein 22-1	Zone 5, Sample 7	4040-4057	October 27, 2015	7190						

Synergy Opportunities

- We want to maximize benefit of work done to date
- We are willing to share data and samples for studies different than what our partners already have planned
- Contact us if you are interested in collaborating
- Stacey Fairweather 406-994-5742
- There may be a brief vetting process

Summary

- Well tests and core indicate dual permeability
- Modeling and well tests indicate fractures contribute strongly to overall permeability
- Modeling suggests very good injectivity
- Tests indicate very good mechanical properties for the caprock
- Joint inversion using shear wave seismic looks promising for imaging the Duperow porosity zone
- TDS in the middle Duperow is too low to get a UIC Class VI permit (even though high levels of H₂S are present)

Acknowledgments

- US Department of Energy
- Altamont Oil & Gas, Inc.
- Columbia University & Barnard College
- Idaho National Laboratory
- Los Alamos National Laboratory
- Lawrence Berkeley National Laboratory
- Schlumberger Carbon Services
- SWCA Environmental Consultants
- Vecta Oil and Gas, Ltd.
- Washington State University

Accomplishments to Date

Regional Characterization

- Contributions to Carbon Atlas
- Evaluating EOR opportunities

Outreach

- Multiple community meetings, individual landowner meetings, website, newsletters, etc.
- Significant interest in collaboration

Permitting

- -NEPA EA complete
- -Landowner permits in place
- -Permit database tool

Risk Management

G SKY CAR

- FEPS & Scenarios complete
- Database created
- Preliminary probabilistic modeling preformed

Site Characterization

- Kevin Atlas created with surface and subsurface data incorporated
- Over 32 sq. mi. 3D, 9C seismic shot
- Static geologic model created
 - Hundreds of wells for tops, 32 logs digitized for geophysical parameters, 2D seismic, 3D, 9C seismic
- Initial flow modeling performed
 - Injection & production regions, sensitivity analysis, reactive transport
- First two wells drilled
 - Core acquired, analyzed
 - Logs acquired
 - Seismic being tied to wells
 - Well tests performed
- Baseline assurance monitoring initiated
 - Three water sampling campaigns
 - Soil flux (chambers, eddy covariance)
 - Hyperspectral Imaging flight
 - LIDAR

STATE UNIVERSITY

Assurance Monitoring -Establishing a Baseline Before CO2 Injection

BIG SKY CA

- Water chemistry
- Water quality
- CO₂ soil flux
- Imaging of vegetation
- Atmospheric CO₂

SAMPLING OF SHALLOW WELLS AND SURFACE WATERS

Samples collected Oct. 2013 and May 2014 from 6 wells and 6 surface waters in a 1.5 mile radius of the proposed injection well site.

General Water Chemistry

Idaho National Laboratory

- Most common ions are sodium (Na), sulfate (SO₄), and chloride (Cl)
- · Chemically consistent with geology of the area
- Significant seasonal variability

Tracers

Establish a baseline for introduced (SF₆, SF₅CF₅, PFC's, ¹⁴C) and natural (noble gases, H and O isotopes, ¹³C) tracers. RESULTS: Very low levels of SF₆, SF₅CF₃, PFC's measured (mostly below the detection limit)

H and O Isotopic Data

Lamont-Doherty Earth Observatory

 δ^2 H and δ^{18} O values are slightly below the global meteoric water line (GMWL) and the local meteoric water line (LMWL)

EDDY COVARIANCE

SOIL CO₂ FLUX SURVEY

- Installed June 2014
- Data so far consistent with field in agricultural use

- MSU
- Portable accumulation chamber
- Survey done June 26-28, 2014
- 102-point grid covering 1 square mile centered on proposed injection site
- Values typical of soil under this type of land use

55

Longitude

Latitude

Eddy Covariance & Soil Flux

Longitude

HYPERSPECTRAL IMAGING

The hyperspectral imaging system mounted in a Cessna 172 for flight based monitoring. Spectral reflectance between 400 and 1100 nm for each pixel of a digital image is collected.

The flight plan for monitoring the production well area, pipeline area, and injection well area.

Three color images of two flight paths on June 24, 2014. Initial geo-rectification using the Inertial Measurement Unit was conducted and further improvements to the geo-rectification will utilize ground based GPS data.

Hyperspectral Imaging

Seismic tracks evident in hyperspectral data when no evidence on the ground was visible

STATE UNIVERSITY

LIDAR (TESTED IN 2013 IN PRODUCTION AREA)

Synergy Opportunities

- Stiff, thin reservoir zone could be good for studying geomechanical effects
- Danielson well has CO₂ and water present

 an opportunity to investigate corrosion issues, wellbore sealing with both fluids present
- GroundMetrics has performed background EM measurements at site

Appendix

These slides will not be discussed during the presentation, but are mandatory

Organization Chart: Management

BIG SKY CARBON

62

STATE UNIVERSITY

Bibliography

- Oldenburg, C. M., Cihan, A., Zhou, Q., Fairweather, S., & Spangler, L. H. 2014. Delineating Area of Review in a System with Pre-injection Relative Overpressure. Energy Procedia 63: 3715-3722.
- Tan, S.R., Huang, L.J. 2014. Reducing the computer memory requirement for 3D reverse-time migration with a boundary-wavefield extrapolation method. Geophysics 79(5): S185-S194.
- 3. Barr, J., Humphries, S., Nehrir, A., Repasky, K., Dobeck, L., Carlsten, J., and Spangler, L. 2014. Laser-Based Carbon Dioxide Monitoring Instrument Testing During a 30-Day Controlled Underground Carbon Release Field Experiment. *International Journal of Greenhouse Gas Control 5*(1): 138-145.
- Dai, Z., Middleton, R., Viswanathan, H., Fessenden-Rahn, J., Bauman, J., Pawar, R., Lee, S-Y., and McPherson, B. 2014. An integrated framework for optimizing CO₂ sequestration and Enhanced Oil Recovery. Environmental Science & Technology 1(1): 49-54.

Bibliography

- Dai, Z., Stauffer, P., Carey, W., Middleton, R., Lu, Z., Jacobs, J., Hnottavange-Telleen, K., and Spangler, L. 2014. Pre-Site Characterization Risk Analysis for Commercial-Scale Carbon Sequestration. Environmental Science & Technology 48(7): 3908-3915.
- 6. Long, J., Lawrence, R., Marshall, L. and Miller, P. 2014. Changes in field-level cropping sequences: Indicators of shifting agricultural practices. *Agriculture, Ecosystems and Environment 189*: 11–20.
- Zhenxue, D., <u>Stauffer</u>, P., <u>Carey</u>, W., <u>Middleton</u>, R., <u>Lu</u>, Z., <u>Jacobs</u>, J., <u>Hnottavange-Telleen</u>, K., and Spangler, L. Pre-site characterization risk analysis for commercial-scale carbon sequestration. Environmental Science & Technology 48(7): 3908-3915.
- 8. Bricklemyer, R., Brown, D., Turk, P., and Clegg, S. 2013. Improved Intact Soil-Core Carbon Determination Applying Regression Shrinkage and Variable Selection Techniques to Complete Spectrum Laser-Induced Breakdown Spectroscopy (LIBS). Applied Spectroscopy 67(10): 1185-1199.

Bibliography

- Lewicki, J., Hilley, G., Dobeck, L., McLing, T., Kennedy, B., Bill, M., and Marino, B. 2013. Geologic CO2 Input into Groundwater and the Atmosphere, Soda Springs, Id, USA. Chemical Geology 339: 61-70.
- Long, J., Lawrence, R., Greenwood, M., Marshall, L., and Miller, P. 2013. Object-Oriented Crop Classification Using Multitemporal ETM+SLC-Off Imagery and Random Forest. GIScience & Remote Sensing 50(4): 418-436.
- Zhdanov, M., Endo, M., Black, N., Spangler, L., Fairweather, S., Hibbs, A., Eiskamp, G., and Will, R. 2013. Feasibility study of electromagnetic monitoring of CO2 sequestration in deep reservoirs. SEG Technical Program.
- Zhdanov, M., Endo, M., Black, N., Spangler, L., Fairweather, S., Hibbs, A., Eiskamp, G., and Will, R. 2013. Electromagnetic monitoring of CO2 sequestration in deep reservoirs. First Break 31(2): 85-92.

